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FOR THE PIP/TOF GROUP OF THE MAINZ A2 COLLABORATION

An improved modelling of bremsstrahlung production including colli-
mation and experimental deficiencies are described as well as its re-
alisation by two methods for calculating absolute and relative photon
spectra and linear polarisation. Comparison of calculations and po-
larisation predictions with measured spectra are given, which indicate
the precise (on a 2% level) and detailed description of the coherent
and the incoherent contributions.

1 Introduction

Asymmetry measurements, which are especially sensitive on small amplitudes, pro-
vide an additional handle to the nuclear structure apart from cross section data.
The use of linearly polarised photons as a tool in nuclear physics demands a reliable
description of its production process and predictions of polarisation with small sys-
tematic uncertainties. The modelling of the bremsstrahlung spectra so far'? seems
not sufficient to describe different radiators and collimation angles with full consid-
eration of all experimental deficiencies over a large energy range. Therefore several
improvements were applied which allow to describe the absolute spectra as well as
the relative ones to a high accuracy.

2 Kinematics and cross sections

Using energy and momentum conservation of the bremsstrahlung process a decom-
position of the involved momenta with respect to the incident electron momentum
in longitudinal ¢; and transversal g; components permits the formulation of kine-
matical limits for the momentum transfer ¢

5—’”> >q—t2+6 with 6, = — (1)
z = =2, "% * T 2E,(1—a)

This momentum transfer range, depending on the electron energy E, and relative
photon energy « = k/Ey, is referred to as the ‘pancake’ due to its large lateral ex-
tension (1 > g; > 0). Calculating the bremsstrahlung cross section®? but retaining
the photon polarisation €, the following asymptotic term is obtained: g—g 0e % cos? .
This shows that the cross section drops in first order with 1/k and that the maxi-
mal linear polarisation, with ¢ being the azimuthal angle of € with respect to the
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scattering plane, is found in that plane. When employing an amorphous radiator,
the electron scatters off a single atom which means that the momentum transfer ¢
may lie at any point in the pancake leading to an isotropic distribution of €, hence
to an unpolarised beam. In contrast to this incoherent contribution an additional
process can be observed in crystal radiators due to their regular structure: When-
ever the momentum transfer coincides with a reciprocal lattice vector ¢ = ¢ the
recoil is absorbed by the whole lattice enhancing the yield by coherently adding the
contributions of each atom. Also the momentum transfer is fixed in space which
therefore leads to a polarised photon beam. Raising the photon energy z increases
the coherent contribution and polarisation monotonically as well as ¢; which de-
pends like g; on the orientation of the crystal = (0, ) (Fig. 2 and eq. A2) and
leads to a discontinuity at z4 = (1 + 1/(2Eeg — ¢2))~", where a given lattice vec-
tor does not satisfy the pancake condition anymore and thus no longer contributes
to the coherent bremsstrahlung spectrum. The total cross section of a crystal®®
is a sum of coherent and incoherent (including electron-electron) bremsstrahlung
where the Debye-Waller factor fpe, (%) € [0, 1], which is a function of temperature
and crystal properties, governs the fractioning into coherent and incoherent con-
tributions to the total cross section. After introducing the intensity I per atom
in units of & = o222 = 0.57947 Z?mb the cross section and polarisation P are
expressed as a sum over lattice vectors g of the functions ¥y 53 (eq. Al) and read
in common notation:

I:Nia;l_;: (1+(1—w)2)\111—§(1—:c)\112 (2a)
P =2(1—2)Uy /I =2(1 — 2)¥;3 /(I + ™ + I°) (2b)

In the coherent contribution due to kinematical constraints for a given lattice vec-
tor the photon polar angle U = Ey¥, is a function of photon energy (eq. 3a), apart
from a negligible dependence on the azimuthal angle?. Collimating the photon
beam enhances the ratio of coherent to incoherent bremsstrahlung, thus increasing
the degree of polarisation. Whereas the incoherent cross section is reduced ap-
proximately by f. = u./(1 + u.) using a collimation angle of U, (note: u = U?),
the coherent one stays unaffected in the energy range z(g) € [z, 24] but vanishes
elsewhere:

2
g 9
U?(z) = ~Z -2 1 3
(@) = (o) ~ 3 - & (30)
ue + 1 -1 T4
o ( QEOg,—g§> 1+ uo(l — z4) (3b)

For the incoherent contribution instead of using the Bethe-Heitler cross section (eq.
3BSb in ref.”) the Hubbell® cross section derived from the Schiff cross section (eq.
3BSe), which has a more accurate dependence on photon energy, radiator charge
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Fig. 1. Comparison of Z, photon energy and collimator angle U, dependence of Bethe Heitler
and Hubbell intensity. In the right panel the intensity was normalised to unity whereas in the
insert the intensity was set to one at the origin (I(0) = 1) for the sake of comparison.

Z and collimation angle u, was employed (see eq. A3 and Fig. 1). For a calculation
of the incoherent contribution from a crystal radiator compared to an amorphous
one, the Debye Waller factor fpe, has to be taken into account, which leads to a
modified form-factor: (1 — Fpep)? = (1 — fpeb)(1 — F;.)? denoted by Fpe,. Here
F, means a realistic carbon form-factor from a Hartree Fock calculation®. Due
to the fact that an analytical integration of the Schiff cross section as performed
by Hubbell for the dipole form-factor with screening constant C' (eq. A3) seems
no longer feasible, two approximate treatments were investigated?. The use of an
effective screening constant seemed superior because in addition the temperature
dependence of fpe,(7') is easier implemented there. The screening constant Ceg
for the Hubbell cross section was determined via a fitting procedure for the total
intensity [ dlopu(l — Fpep)® = [ dlowun(Cesr) with dI' = dzd?,dd.dde,, resulting
in Ceg = 91 for the amorphous and 33 for the incoherent intensity.

Also an improved description!? of the electron-electron bremsstrahlung I¢ was
used, which takes into account the binding energy of the radiator electrons and
which has a non trivial Z and photon energy dependence, see (eq. A4). For this
contribution the asymptotic Bethe-Heitler angular distribution f(U) = U/(1 +
U?)2, which leads to the collimation reduction factor f. (s. above) was adopted.

3 Treatment of experimental deficiencies

Up to now an ideal electron beam was assumed, but in experiments a deficient elec-
tron beam (Tab. 1) affects the photon spectra, especially the collimated ones. A
finite beam spot size, characterised by the distribution wgg of the impact positions
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s = (sg,sy) of the electrons on the radiator, has the same effect like a collimator
with a fuzzy edge and smears out the collimator cutoff in the photon spectra at z.
(eq. 3b). The primary divergence of the electron beam, described by the distribu-
tion wgp, has a similar effect on x. but causes in addition a variation of the crystal
angles with respect to their nominal values €2y changing the intensity due to the de-
pendence of the momentum transfer on these angles. The deflection of the electron
is not given by the beam divergence alone but is enhanced because the electron un-
dergoes many small angle scattering processes mainly due to Coulomb interaction
with atoms while traversing the radiator (thickness zg). This distribution is well
represented by Moliéres theory!!, which uses a Gaussian approximation for small
angles defined by the variance o7, _(z) being a function of medium properties and

plane

pathlength z, the particle has travelled. The experimental photon intensity is a

Table 1. experimental deficiencies and their influence on the photon spectra

source distr.  effect influence
diamond temperature - Debye Waller factor <"/
BS: beam spot size wps(s) "fuzzy” collimator  z,

BD: beam divergence wBD(Q) + variation of g4

MS: multiple scattering wys(m) increases BD T4

ES: beam energy spread wgs(p) smears out peaks Jeob

sum over all these effects weighted with the appropriate distributions. Due to the
collimation condition (a collimator with radius r. is situated at distance z.) the
boundary of the integration volume in eq. 4 is topological non-trivial.

1
I = —/ dz/ d*m dEo/ dzp/ d’s
2R JR MS ES BD BS

xwps(m, z) wes(Eo) wep(p) wes(s) I°" (R, e(p, m)) (4)

re> |, (2,8)

Underlined vectors denote the transversal component of the respective unit vectors.
This situation is sketched in Fig. 2 in order to clarify the relations used to calculate
the experimental spectra via eq. 4. Two approaches will be presented: (ii) An
accurate Monte Carlo method: MCB which permits the study of collimation effects
on the photon beam and its polarisation in full dependence of all electron beam
deficiencies®. (i) An analytical one: ANB which is approximative but very fast for
quick first results.

3.1 Monte Carlo simulation: MCB

Measured electron beam parameters and their standard deviation as well as ra-
diator and collimator properties are the basic input for calculations based on the
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Fig. 2. (Left) Sketch of the momenta and vectors
used in describing BS,BD and MS (see Tab. 1)
and the resulting electron divergence (ED) vec-
tor e. (Right) Angles and vectors, i.e. the re-
ciprocal basis vectors b;, in reference to the lab =

system (é;). See also eqs. A5c and A2. @ b2

Monte Carlo technique. Starting from a given number of electrons N,, depend-
ing on the desired statistical accuracy, a certain set of physical values are chosen
randomly in parameter space. First the direction of an incident electron p with
energy Ej impinging at s on the radiator is chosen from the beam energy wgs and
divergence wpgp distributions, which are assumed to be of Gaussian shape with
known parameters og,, 0,”¥ and 7Y respectively. The mean polar angle deviation
m(o,ne(2)) from the incident direction depend via Moliéres theory'" on the depth
z of the bremsstrahl process in the radiator, which is chosen randomly from a ho-
mogenous distribution within the radiator thickness zgz. To calculate the coherent
bremsstrahlung for this particular electron the lattice has to be rotated into its
coordinate system, involving a transformation of the crystal angles €2,. The total
transversal electron deflection e due to multiple scattering and beam divergence
and the transformation of the crystal b, (Q) axis in the electron system b, is calcu-
lated (eq. Abc and Fig. 2). Then a lattice vector is chosen uniformly in reciprocal
space Vz with the Miller indices h,k,[, the intensity Ic"h(f]) is calculated with
these parameters & = (h,k,l, Eq, z,5,m,p, k,x) and the photon momentum k' is
transformed back in the lab system. The resulting cross section is differential in
photon energy k and angle, which is the azimuthal (1) in coherent bremsstrahlung
and is the polar angle (¢) in the incoherent case. As an example the polarisation
for a rectangular collimator compared to a circular one, both producing the same
tagging efficiency, is shown in Fig. 3.
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Fig. 3. Enhancement of polarisation at low energies (right) by use of a rectangular collimator
instead of a circular one (left).

3.2 Analytical calculation: ANB

The following approximations were used to derive an analytical function from the
complicated intensity expression (eq. 4): (i) All two dimensional transversal distri-
butions are assumed to be Gaussian and approximated by azimuthal symmetrical
Gaussian. (ii) A mean MS variance is used, averaged over the crystal. (iii) A
combined total electron divergence (ED) distribution wgp from a folding of the
MS and BD distributions is used instead. (iv) The variation of g;, being in second
order of 62 and therefore much smaller than the variation in g;, is neglected in the
intensity. With that the uncollimated coherent intensity (eq. 4) in terms of the
variation [ of g; due to ED is expressed as follows:

e ~ /d2e wep(e) I (g:(b,)) = />5 dl wi(D)I(ly +1) (5a)
d

with w(l) = — / e wgple)  and g = lo(by) + I(e) (5b)
dl I>1(e)
The sole dependence of the intensity on [ allows the conversion of the two dimen-
sional integral to an integral over [ in consideration of the kinematical constraint of
the pancake. Eq. 5a has to be calculated numerically but for small BD (o, 1072)
the integral may be solved analytically and will be presented in a forthcoming pa-
per. A collimation function is derived in the following, which includes experimental
deficiencies. In the electron coordinate system the circular collimator is charac-
terised by a lateral displacement distribution w.(dr. = 6pz./Fo, ¢.) of its centre.
Due to the azimuthal asymmetry, only the integral over the displacement dp has
to be calculated. The collimator angle is now a function of the displacement and
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azimuthal photon angle U(p, ¢), which results in a convolution of the intensity*:

u(p,p)
et = [ pdpdsue) [ duh@)ou - u(w) (6)

Owing to the delta function the ¢ integration is trivial and the expression separates
into the coherent intensity in terms of the ¥; functions and a collimation function
I = Y- I3 (2, §)C(U(x)). The treatment of collimation in the incoherent case
works analogous, but the different angular dependence leads to a remaining integral
(note: v =1/(1+ U?):

B 1 dc(U)
20v/v —ov?2 dU

Therefore, a single collimation function accounts for experimental deficiencies in
both cases of coherent and incoherent bremsstrahlung production. After these
derivations, C'(U) and c(v) have to be calculated numerically only once and the
remaining evaluation of the intensities is a closed analytical calculation providing
very fast results.

[ine — / dv c(v) ™ (v) with () = (7)

4 Results

Using the parameters from Tab. 2, intensities are calculated and are compared
(Fig. 4) with measurements of the bremsstrahlung spectra for nickel and diamond
radiators obtained at Mainz. The crystal angles were aligned such that the discon-
tinuity of the [022] lattice vector was located around 350 MeV. For the incoherent
intensity (fig. 4a) the Hubbell cross section (eq. 7) was employed for nickel whereas
the incoherent contribution for total crystal intensity in Fig. 4b stems from a cal-
culation for carbon. Comparison of data and calculations on basis of absolute
intensity are a more stringent test of the modelling then in terms of relative in-
tensities 1™ = I°°®/I™Ni which are shown in Fig. 5. A check of the polarisation
prediction is provided by a measurement of the beam asymmetry of coherent 7°
photoproduction?. The prediction is compared with the deduced photon polarisa-
tion and is in good agreement with the data for both collimation angles (Fig. 6).

5 Summary

The comparison of the data with the calculation indicates the high quality of the
description. It can handle different radiators and collimators as well as the exper-
imental deficiencies in its full complexity via the MC approach. The advantage
of the approximative analytical treatment, which has a mean deviation of ~ 3%
with respect to MCB, is its speed because it is about 500 times faster than MCB.

4th
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6. Degree of linear polarisation from a calculation using the parameter of set A and B in

comparison with a measurement of the asymmetry of coherent 7° photoproduction 2.

With both codes photon spectra and polarisation prediction are reliably produced
with a systematic error less than 2% adding only a small contribution from photon
polarisation to the systematic error of asymmetries.
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Appendix

Table 2. Parameters used for the calculation in Fig. 6. The diamond thickness and crystal angle
was taken as d = 0.1 mm (1 mm for TagX) and ® = 7/4, respectively.

set 4 @ | Obspot _ Obdiv Ve
[rad] [rad] | [mm] [mrad] | [mrad]

Fig. 4 .0607 .602 | 0.2 0.15 0.6
Fig. 6 A .0607 .634 | 0.3 0.2 0.5
B .0607 .634 | 0.3 0.2 0.7

Fig. 5 220 || .0607 .694 | 0.2 0.15 1.2
350 | .0607 .602 | 0.2 0.15 1.2

TagX | .1501 .818 | 0.1 0.39 1.3

The coherent intensity expressed by means of the functions 9{°" as derived in
ref.% for an ideal electron beam without any experimental deficiencies read:

Ut = )] Goglet W= 2 Goa - d)glg;”
Yol — 4 Zg G689, *[(95 — 93) cos 2¢ + 2gag3 sin 2¢)|

and G(§) = (27)%a38%(§)e 49" F?(g%)g*

(Ala)
(A1b)

Here, S and F' are the crystal structure function and the atomic form-factor de-
pending on the lattice vector g, whereat the longitudinal and transversal momen-
tum transfer entering the cross section in addition depend on the orientation of
the crystal €

91 = g1¢c080O + (gocosa + g3 sina) sin © (A2a)

9 =95+ 95 + (97 — (gacosa + ggsina)?) sin® © (A2b)

The incoherent collimated intensity functions @bi‘;‘ﬁ,i, which result from an

integration® of the Schiff cross section over the photon angle up to a collimator

4* Workshop on “e-m induced Two-Hadron Emission”, Granada, May 1999 54




angle U, read in terms of v = 1/(1 + U?):

Uy =2[1+M(1)— 1+ M(v))v —c] (A3a)
4 4

T, = —govﬁ‘ + 18v* — (842 +6) v + 857 + 2M (1) + 3 (A3b)

2

+ (4v* — 6v%) M(v) — 662 (M(v) —M(1) + 3¢
1/3
with M(v) = —In (67 +v*) —2In c
1—vw C
Cc = 257, arctan (m) and 57, = mdz

The sophisticated treatment of the electron-electron bremsstrahlung by ref.!? gives
for the intensity functions v5:

e e 2 1 8
‘P1:‘I’2_3—Z:E[¢(6)—4—§an (Ada)
19.9 —4Ine for e > (.88
¥(e) = 9§ o . - (Adb)
> en(0.88 — )" for e < 0.88
th 100 T
Wi €= 7E0Z2/3 1— =2

e, = 19.7,3.806, 31.84, 58.63, 40.77

The angles and vectors used here are related as follows, where in eq. Aba and
A5b the vectors refer to the crystal (b;) and lab (&;) system respectively and in
particular the reference for the transverse vectors is b; or 2. Due to the smallness

of @ transverse vectors (t) differ in both systems negligible, for example: t|, ~t
or b2 = 82 — (622)2 ~ 62:

~

k= Z(e,, z) a=/(z, 32) ¢ = ZL(eyb2) (Aba)
L —b)=¢—a  a=L(-b,b) ¢=L(b)  (A5b)

fo(— cos K, sin k) b,=b —e (Abc)

I

=
I

bl (QO
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