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1 Introduction

Polarised photon beams are quite important because asymmetries are much
more sensitive to some variables than are absolute cross sections. This origi-
nates from the linear dependence of the asymmetry on these variables, which
otherwise enter the cross section quadratically. Another advantage lies in the
cancellation of dominant processes, which are already known from absolute
measurements.

In spring 1996 a *He(7,NN) experiment was performed at MAMI and it is
of vital importance for the analysis to extract the polarisation of the pho-
ton beam. Here, the only possible access to this observable is based on a
derivation from the measured bremsstrahlung spectra.

1.1 Kinematics

When considering the bremsstrahlung process one has to deal first with the
kinematics. This is shown in figure 1, with the equations respecting energy
and momentum conservation. During these experiments photons in the en-
ergy range of 100-350 MeV had been produced by 855 MeV electrons. This
allowed the neglection of recoil energy 7' in kinematical calculations. Due

Figure 1: Left: kinematics of the bremsstrahlungs process and the notation of
energies and momenta involved. Right: Longitudinal and transversal momen-
tum decomposition (not to scale).

to energy and momentum conservation an ansatz for decomposition of the
momenta in longitudinal and transversal components leads to constraints of
the recoil momentum. The longitudinal momentum is much smaller than the
transverse one allowing a very shallow region with respect to the incident elec-
tron momentum, which is called pancake; its limits depend only, on x = k/E,
the relative photon energy. This holds for every single bremsstrahlungs pro-
cess, but employing a lattice as radiator introduces additional constraints



[fig. 2]. Coherent scattering with corresponding bremsstrahlung is only pos-
sible if the so called Bragg condition is satisfied. This requires that the recoil
momentum ¢ coincides with a reciprocal lattice vector g, or in other words,
g must lie inside the pancake. The consequences for the bremsstrahlungs
spectrum and the photon properties are discussed in the following section.

Figure 2: Pancakes in reciprocal lattice space of diamond for two different
. m2 1 .. . .

photon energies. § = 5¢—— denotes the minimum longitudinal momentum

transfer and 0 the crystal angel between the incident electron momentum and

basis vector by.

1.2 Elementary process

The purpose of this section is to sketch the underlying QED process of the
bremsstrahlung and to derive the qualitative behaviour of the cross section
particularly concerning the polarisation properties of the photon beam. Due
to energy and momentum conservation a free electron is not able to emit
a photon, but a third partner (i.e. atom) is needed which absorbs the ap-
propriate transfer momentum |[fig. 1]. This takes place via an exchange of
a virtual photon, which turns bremsstrahlung to a second order process in
the QED coupling constant. The corresponding Feynman graph is sketched
in figure 3, while the reverse time ordering — first photon emission and then
interaction with a coulomb potential — contributes, too. With the help of the
Feynman rules, see for example [Hal84, Bjg64], the invariant amplitude in
momentum space, whose squared value is proportional to the cross section,



P.S

Figure 3: Left: Feynman-graph in lowest order of the bremsstrahlung pro-
cess with momenta. Right: Time reversed graph with propagators and vertex
factors

can be written as (the invovled symbols are defined in figure 3) :

M x

(', s) |¢ Yo + o ¢lulps) (1)

1 1 1
Varg T T
At a vertex where the emission of a free photon with polarisation €, takes
place a factor of —i¢/ v/2k has to be applied. This stems from the plane
wave of the electromagnetic four-potential, which is attached to a “photon” :
A, = €,/V2k-(e **4¢?®). Constraints for the polarisation vector arise from
the Maxwell equations and the gauge freedom: € - £ = 0 (meaning that real
photons are transverse) and 6/21 = —1. The first term of A, will be neglected,
because it describes a photon absorption from the quantum field and is not
observed here. The interaction with an outer static Coulomb field A4, =
du0-(—Ze/4Am|Z]) is described by a factor of —iA. Expanding the first term in

(1) with '+ ¥+m and considering {d, ¥} = 2a-b leads to ¢%%. Since
only the main features of the cross section shall be derived here, the further
calculation is limited to soft photon emission (k — 0), which facilitates the
algebra. If the properties of the Dirac spinors are used and terms linear in

k are neglected the first term in (1) becomes: ﬂ(p’)W% = ﬂ’ﬁ,l—_',‘;'yo

and thus the invariant amplitude, omitting the phase space factor for sake of
convenience, reads:

_y e p €D
S 4 2
MOCU%U(k-p’ k-p) (2)



The first factor in equation (2) leads to the elastic cross section (key word
'Rutherford scattering’), which is well known and shall not be presented
here. The resulting so called Bethe-Heitler cross section in the soft photon
approximation without the usual summation over the photon polarisations,

which are given here in the coulomb gauge (¢y = 0), reads:
do . Pk (@
dkdQpdQ. T 20273 \k-p k-p

In order to see the dependence of the cross section on the polarisation a
special kinematic, employed in the setup of the *He(¥, NN) experiments in

)2®(E—k—m) (3)

1996, is considered in the following: 7|| k || €, (€, being the basis vector along
the x-axis of the lab system, i.e. the incoming electron). After integration of
(3) over the electron emission angles the dependence on photon energy and
polarisation, where ¢ denotes the angle between the polarisation vector € and
the scattering plane p, p’ [fig. 1], is easily noticed:

do 1
% X 7 Cos o) (4)

One sees, that the cross section drops in leading order with 1/k and that
polarisation vectors, which lie in the electron scattering plane, contribute
most strongly, producing a photon polarisation P = (6, — 0y)/(oL + 0y) of
unity.

If we consider photons emitted along the incident electron momentum only
(i.e z-axis) the scattering plane is determined due to momentum conservation
[fig. 1] by the recoil momentum §. In the case of incoherent bremsstrahlung,
which means scattering off amorphous material or off one single atom re-
spectively, the recoil momentum is isotropically distributed around the z-axis
consequently leading to an unpolarised photon beam. However, if the recoil
momentum is fixed most of the photons have the same polarisation vector
due to equation (4) yielding a polarised beam. In comparison to the restricted
case considered here, a non vanishing photon beam divergence reduces the
polarisation. The broader the angular distribution the smaller the integral
polarisation turns out to be. This “scattering plane fixing” occurs when a lat-
tice is used as a radiator, because then the recoil is not transfered to a single
atom but to the lattice, which constrains the recoil via the Bragg condition:
qd = gnr figure 2. Only recoil momenta which coincide with a reciprocal lat-
tice vector, defined by the Miller indices [hkl], contribute to the coherent
bremsstrahlung cross section. The second constraint is due to the so called
pancake [fig. 2], which allows the selection of a photon energy range and of
just one or a small subset of reciprocal lattice vectors gnr; via appropriate
rotations of the crystal.



2 Cross section and polarisation

2.1 1Ideal electron beam without photon collimation

The elaborate treatment by May [Tim69, May51] leads to the five fold dif-
ferential cross section, which is reduced by integration over the photon and
electron angles [Bol62, Dia68| and used in the following analytical calcula-
tions. Formulas may also be found in [Ram95, Loh94] with a more detailed
discussion:

do = [fD(q) + (1 — f)N] F2do®" = do®" + do™ (5)

Here, in the total cross section do/dk of a crystal, the diffraction factor D de-
scribes the influence of the crystal structure, whereas the formfactor /' models
the atomic structure, i.e. the charge distribution. The so called Debye-Waller
factor, exp(—A(T)q¢?) = f(q?) € [0,1], which depends on the temperature
T, determines the ratio of coherent to incoherent cross section, which takes
place on (1— f)N Atoms. The cross sections of the coherent (ocon = 01 +0))
and incoherent (oy,c) part, the latter corrected for contributions of scattering
off the shell electrons in the crystal, and the resulting polarisation (all in
terms of functions ¥;) used for the calculation read in common notation:

. do.coh/inc . 9 .
Icoh/lnc — x = (1 1 — 2)2 \IICOh/mC _fn1— \choh/lnc
S =+ (=2 - S - 2)u ()
with ¥ =405 ¥ =394 (7a)
1
yire =4 4 4/ qdg (1 — f)F*(q — §)* ~ 13.3 (7b)
)
: 1 1
P = ?0 +4/ qdq (1 — f)F? <q2 — 4 (111% —42 +3>> ~ 12.6
é

Ut = 4} Géglgl
Peoh — 24 Zg G6%(g — 6)g? (8a)
P = 4 Zg G6%[(g2 — g2) cos 2¢ + 2g2gs sin 2¢]
and  G(g) = (2r)°a”*S*(§)e " F2(¢*)g'g; *
g7 = g5+ g5 +sin®6(g} — (g2 cosa + gzsina)?) (8b)
g1 = g1 cosf + sinB(gs cos a + gz sin @)



Here the lattice vectors enter via |§| = | 3. gib;| = g and g; = 8(zq) > 6(z) =
ﬁﬁ with Ey = 1673 beeing the electron energy as provided from MAMI in
units of the electron mass. For maximum polarisation the angle ¢ (4) between
polarisation vector and a reference plane was chosen to tan ¢ = g3/gs of the
[022] lattice vector. For the incoherent description the atomic form-factor
F(q®) and the Debye Waller factor is taken into account via equation (7b),
compare (4BSb) in [KoM59], and is further denoted as Bethe Heitler intensity
(BH). The cross sections, intensities and polarisations were calculated in the
program ANB in the language C and part of the code is presented in the

following:

#define EPS -0.78539816
#define GUNIT M_2P1/923.7
#define X_RANGE 1000.

#tdefine EO 855./MASS_ELECTRON

void int_coh( double *intsum, double *intdif )
{
for( 1=0; l<max_latticevec; 1l++ ) /* loop over lattice-vecs 1lv[] */
{
g = 1v[1];
g2 = v_sprd( g, g ) * GUNIT*GUNIT;
aps = ((g.y*g.y-g.z*g.z)*cos(2*EPS)+2xg.y*g.z*sin(2+EPS))*GUNIT*GUNIT;

ff = 0.2283 + 1.8359*exp(-10528%g_2) + 1.8119*exp(-4678*g_2)
+ 1.5809%exp(-239*g_2) + 0.5426xexp(-27116%g_2);
ff = 1.-f£/6.;
dmy = sin(theta) * ( g.y*cos(alpha) + g.z*sin(alpha) );
gl = ( cos(theta)*g.x + dmy ) * GUNIT;
gt_2 = (g.y*g.y+g.z*g.z+pow(sin(theta)*g.x,2.) -dmy*dmy) *GUNIT*GUNIT;
xd = 2.%EO*gl / ( 1. + 2.%EO*gl );
dmy = M_2PIxff / (g_2%gl¥gl);
Gg = A3/8. #* dmy*dmy * S_2[1] * exp(-Adebyex*g_2);
for( i=1; i<=X_RANGE; i++ ) /* loop over all photon energies */
{ x = (double)i/X_RANGE;

if( x>xd ) { i=X_RANGE; continue; }

del = x/(2.*%E0*(1.-x));

psil 4 * Gg * del * gt_2 * glxgl; /* calc psi - fcts */

psi2 = 24 * Gg * delxdel * gt_2 * (gl-del);

psi3 = -4 * Gg * del*del*del * aps; /* calc intensities */
intsum[i] += ( (1.+(1.-x)*(1.-x))#*psil - 2./3.%(1.-x)*psi2 )
intdif[i] -= 2%(1.-x)*psi3; }

}
}

The functions ¥$°" computed by this program are presented in figure 4, and
the resulting cross sections and intensities are plotted in figure 5. The co-
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Figure 4: Functions V" versus photon energy in MeV for lattice vectors
[022] and [044].

herent (lattice vectors [022] and [044] only) and incoherent part in units of
o = 0.57947 - Z?mb versus photon energy in MeV are shown as well as the
sum of both and the relative intensity. Due to the definition of the inten-
sity I(xz) = xo(x)/ the relative intensity I = (lecoh + inc)/Iinc, and the
relative cross section are identical. The comparison of the absolute and rel-
ative cross section with the measured yields, obtained with a nickel and a
diamond radiator without collimation, may be seen in figure 6. The yield
from nickel and diamond were each normalized in the energy range of 50
to 500 MeV on the analytical incoherent and total cross section, (7,8). The

120 L L 700 L L 700 2.2 L L
coherent incoherent total relative
100 4 L 600 r 600 [ 2.0 r
D 500 1 - 500 r
= 80 - 1.8 -
c
2 400 - 400 F
S 60 F 16 F
@ 300 + - 300 + r
@
2 40 F 14 F
= 200 - 200+ r
o
20 100+ 1004 F 12 r
0 T T T T 0 T T T T 0 T T T T 1.0 T T T T
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

photon energy [MeV]

Figure 5: Analytical calculated absolute and relative cross sections and inten-
sity in units of & = 0.57947 - Z?mb

overall agreement is quite good although the analytical description does not
take into account effects which stem from multiple scattering, electron beam
divergence and collimation. These spectra may also be used for a comparison
with the Monte Carlo program MCB [fig. 7], which is presented in [Wun97], in
order to check its results. These formulas can be used for a proper normalisa-
tion of the experimental spectra as well as the ones simulated by MCB to the
analytical cross sections. For the comparison of the measured and simulated

11
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Figure 6: Comparison of absolute (left in units of &) and relative (right in
arbitrary units) cross sections with the experimental yields (note: ove = Il ),
which are normalised on the absolute analytical cross section via the integrals
in the range of 50 to 500 MeV. This fixes the normalisation factor for the
relative experimental spectrum.

relative intensity, the correct normalisation is of vital importance. In order to
obtain the uncollimated polarisation, the following formulas [Ram95, Loh94]
were applied for the polarisation presented in figure 6 and 8, where do is
an abbrevation of the single differential cross section do/dk integrated over
photon and electron angles.

h h co
do™ — dof®™  2(1 — z)Tsh

= = 9
do-coh + do-mc Itot ( a‘)
: co (8a) co —
with ‘1’1/}21/3 = Z ‘1’1/121/3( )
( —
Io = Iinc + Ico 9b
tot Zg n(9) (9b)

Therefore the polarisation is a ratio over sums from contributions of dif-
ferent lattice vectors and may not be expressed as a sum over polarisations
from different lattice vectors. The consequence of this is firstly, that due to
V() beeing smaller than I () the polarisation of one lattice vector only
is higher than the resulting polarisation, considering the additional contri-
butions of higher lattice vectors. Secondly, the analytical step from equation
(5.17) in [Ram95| (9a here) to equation (5.30) is only possible if just one
lattice vector is considered, but is no longer valid if higher lattice vectors

12
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Figure 7: Comparison of uncollimated MCB yield for ideal case and 15 lat-
tice vectors (see text) and normalisation (via integration over plotted energy
range) on the analytical cross section in units of & versus photon energy in
MeV

contribute as well. For example the evaluation at the edge z4(220MeV) re-
sults in P = 50.0% from lattice vector [022], and P = 1.9% from [044]; both
give a polarisation of 49.8% which is smaller than the one from the main
contributing vector! The total polarisation distribution for two lattice vec-
tors, combined and single, produced by ANB via (9a) is shown in figure 9 and
may be compared with the simulations from Rambo’s code and MCB for the
ideal case without collimator. In order to check the influence of higher lattice
vectors, and to ensure the correct treatment of ’adding’ the contributions
from different lattice vectors, the comparison between analytical results and
MCB was done for fifteen lattice vectors, which amount to almost the total
cross section, and are presented in figure 8. The lattice vectors used in this
calculation and additional fiffteen are shown in table 1, sorted in descending
order according their relative contribution.

2.2 Ideal electron beam and photon collimation

The influence of a finite beam spot size, transversal beam momentum dis-
tribution, and multiple scattering is the typical domain of a Monte Carlo
treatment, but the analytically calculation of collimation effects is feasible
and is presented in the following. Due to kinematical constraints for a given
lattice vector and photon energy the photon emission angles are not indepen-
dent from each other, but the polar angle 9 is a function of the azimuthal

13
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Figure 8: Comparison of the analytical calculation, using 15 lattice vec-
tors (see text), to MCB polarisation (left) and relative cross section (right).
The energy of the discontinuity (edge) due to vector [022] is at z4(6 =
0.0607 mrad, o = 0.694 mrad) = 220 MeV

one (1)1).
with F(@/}l) = —3> COS(’@/Jl - 04) + 93 sin(¢1 - O{) (10b)

This photon energy dependence of the polar angle has to be accounted for
in the triple differential cross section via Dirac’s delta distribution P using
u=U%

= a-eme - 20 a:><1>2] 67(u — (i) dudyy (1)
Pal® — 2(1 - 2)®4(th1)8” (u — u(r)) du di (12)

The ® functions shall not be presented here, but may be found elsewhere
[Tim69], because all one needs to know is their relation to the ¥ functions:
Uy/93 = f dip; ®1/3/4. Now the effect of collimation is trivial: due to the 6P
distribution one detains a condition in terms of the collimator angle u. for
the contributions to the angle integral:

I = /du dy @ = /uc du I°°"6P (u — u(x)) © I°Mz)0(x — z,)
c 1 dud1,/11 o c
(13)

14



I.on vector kg S?|I.n vector kg S?|I..n vector kg S2
26.4 [0, 2,-2] 225 64]0.24 [0, 4, 4] 758 64]0.14 [ 2,2, 0] 836 64
3.54 [0, 4,-4] 356 64]0.21 [0, 2, 6] 753 64]0.13 [0, 0,8 749 64
1.63 [ 0,2, 2] 680 64[0.21 [1,-1,-1] 816 32(0.13 [ 0,10,-10] 548 64

1.07 [0, 0, 4] 666 64 [0.19 [0, 6,2] 761 64|0.13 [ 1,-1,-3] 812 32
0.94 [0, 6,-6] 442 64(0.19 [1,1-1] 819 32|0.13 [1,-3,-1] 811 32
0.88 [ 0,4, 0] 692 64(0.19 [1,-1,1] 819 32|0.13 [2,0,2] 837 64
0.50 [ 0,-2, 6] 650 64|0.18 [1,1,1] 822 32(0.13 [2,2, 0] 837 64
0.34 [0, 6,-2] 702 64(0.16 [ 0,-6,10] 608 64 |0.12 [1,1,-3] 816 32

0.33 [0, 8,-8] 503 64(0.15 [0, 8,-4] 711 64|0.12 [1,-3,1] 815 32
0.27 [0,-4, 8] 631 6 |0.14 |2, 0,-2] 836 64(0.11 [0,8,0] 765 64

Table 1: Lattice vectors g = (h, k,l) - 27 /a with diamond lattice spacing a
used in the analytical calculation. The coherent intensities at the edges kq for
a =0.694,0 = 0.0607 rad and the structure functions are recorded.

Considering the order of magnitudes of the involved variables, the g7/ term
may be neglected compared to g;/d and the weak dependence on ¥ (I' K
g1/9) justifies the approximation which was used for the 1; integration in
equation (13):

u(z, ¢r) = u(z) = g/6(z) - 1 (14)
Hence, if u(z) < u, the coherent cross section vanishes. Solving this condition
for x, and rewriting it using the variable z, instead of g;, yields:

14 u (1 — zg)

T, (15)
Therefore, the only effect of collimation on the coherent side is a vanishing
contribution below a certain photon energy zx., which is the result of the
constraint relation (10).

The effect of the collimation for the incoherent part does not affect the en-
ergy dependence of the cross section, but directly affects the angular one
(d?0™ /du ~ (1 + u)?) . Now the treatment of collimation just means in
lowest approximation the application of a reduction factor f. to the cross
section do™™ (mEj is approximated by infinity) with:

v 2 _inc = 2 _inc Ue
= = ]_
fe /0 dud’o //0 dudo T (16)

15
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Figure 9: Left: analytical polarisation for ideal case without collimator. Plot-
ted are the polarisation amounting from two lattice vectors together and the
ones from each vector alone. Right: comparison between MCB polarisation
and the analytical one.

For the applied collimation in the *He experiment of ¥, = 0.031°, the po-
larisation for a diamond setting with discontinuity at 220 MeV may be seen
in figure 10; and the relative spectra compared with the experimental ones.
Remind that experimental insufficiencies, the effects mentioned above and
treated in MCB , reduce the polarisation. This is the main reason for the bad
description of the data, and proves the need for a Monte Carlo treatment,
which is able to account for all these experimental effects. The analytical
cross section does not show the blur on the edges like the experimental spec-
tra, which are mainly due to transversal beam momentum distribution and
multiple scattering as is demonstrated with MCB in [Wun97| and is modelled
later on page 21. The sharp cutoff at low energies, which is caused by the
collimator, entails that contributions from higher lattice vectors do not add
to lower ones in the relative spectra, e.g. see the two lowest peaks in figure 10
left. This causes the discrepancy at higher photon energies in these spectra
which is not the case for uncollimated yields and explains the good agreement
there. The obvious discrepancy at low energies (the relative intensity beeing
lower than unity) is not as serious as one might assume. It arises from two
sources: an insufficent analytical description of the nickel and diamond in-
coherent intensity, and from different behaviour of those experimental yields
at low energies. The nickel yield rises way steeper for E., as the diamond one
leading to a collimated relative spectra which does not tend to unity at low
photon energies [fig. 10] and leads also to a bad description in the uncol-

16
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Figure 10: Relative cross section, calculated (BH) for an ideal beam, is com-
pared to the experimental one (left) and polarisation (right) for edge 220 MeV

limated case calculated via the Bethe Heitler intensity (BH), see figure 11.
As long as this behaviour is not understood or modelled appropiately, the
problems at low energies prevent a proper normalisation of the experimental
yields causing unreliable results concerning the predicted polarisation.

3 Experimental effects and improved analytical
description

3.1 Hubbell intensity and electron contribution

Due to the problems mentioned above, neccesary improvements especially
better cross sections for the incoherent part were adopted:

1. More accurate treatment of the angular and Z dependence of the inco-
herent cross intensity to account for collimation and different radiators.

2. Z and k dependent shell-electron contribution to the bremsstrahlung.

3. Multihit correction of the tagger spectra for uncollimated yields.

17



4. Approximate treatment of beam divergence, multiple scattering and
beam spot size to further benefit of the short running time of ANB .

Instead of the simple treatment of the incoherent contribution via the cross
section in equation (8a) the photon angular (U = ¥;Ep) and Z dependent
Schiff cross section [Hub58] for the incoherent nuclear bremsstrahlung con-
tribution is used from now on, because of the better angular description as

it is shown in figure 13:
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Figure 11: Comparison between uncollimated analytical (BH) and experimen-
tal spectra. The lower right panel shows the differential spectrum (diamond
subtracted by coherent intensity). The discrepancies proof again (see also page
16) the need for a better incoherent description.
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Figure 12: Left: Bethe Heitler (page 15 and equation (8a)) and Hubbell inten-
sity (17) dependence on the photon angle for different energies (z=0.1,0.8).
Right: comparison of incoherent intensities from equation (18) for different
collimation angles (U, = 9.Ey). The intensities are normalized to one at the
origin for ease of comparison.

dI 2 2
W:(1+(1_$) )‘1’1—5(1_37)‘1’2
Uy = 40*(M(v) — 1)

Wy = 120%(1 + (2M (v) — 8)(1 — v)v) (17)

(s =) (%) |

The integration of this cross section over the polar photon emission angle ¥
up to a limiting collimator angle U, = Ej4, is feasible and presented here in
terms of v = (1 4+ U2) ™!, see figure 12:

U, =21+ M1Q) -1+ M())v — (|

with M(v)=—1In

40 s (8 8 4
2 18
+(4v3—6v2)M(v)+2M(1)—b%(M(v)—M(1)+§c> (18)
2 b(1 — 2713F 1 —
with c:garctan (%) :TO a:x

In equation (5) it is quantified how the incoherent contribution of a crystal
radiatior is suppressed in comparison to an amorphous one. Therefore the
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Figure 13: Comparison of Z dependence of the incoherent intensities for col-
limated and uncollimated case. For the Bethe Heitler intensity ¥ (x) from
equation (7b) and the constant values are plotted, whereas the angular reduc-
tion factor (16) was employed.

Hubbell cross section, as stated in (17,18), may be used with the screening
constant C' = 111 from [Hub58| for amorphous radiators. Therein a Yukawa
Potential, leading to a monopol formfactor of Fo(q?) = 1/(¢% + (CZ71/3)?),
was used to account for atoms with different Z. In case of a crystal a modified
formfactor (see page 9) has to be applied: Fpe,(¢%) = Fo(g?)(1 — f(¢?)). Via
a numerical comparison of Fger and Fpe, an effective screening constant of
C*f = 32.2 was evaluated and used to calculate the incoherent contribution
of a crystal radiator.

From [KoM59] it is also possible to introduce a photon energy and Z depen-
dence in the incoherent electron shell contribution which is adopted in the
following. The discrepancy of (19,20) and (17) to the previous treatment is
clearly seen figure 13 when compared with the Z and photon energy inde-
pendend values used in (7):

Ve =771 [¢(e) —4-— gln Z} o

10 8

1
v =7 [¢(e) -5 -3 Z] with €= —00 2

3 T EZ2P1—z

The photon energy dependent function 1 (e) is given in [MOw73] for different
€ regions and corrected for binding effects and are repeated here for conve-
nience (20). The resulting total intensities (integrated over the photon angle
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JdE I(E) ‘ [ine I ‘ Ig Ig ‘ Jeoh
Uncoll. 13844 11564 | 478 2751 | 3468
Coll. 5074 4001 | 213 1226 | 1521

Table 2: Total intensities for the incoherent bremsstrahlung contribution and
the coherent one, uncollimated and with a collimation of U, = 0.89. Remind

_zdr _ _z dz
that I = gdo = a2Z%do

and energy) are shown in table 2.

S ,en(0.88— €)™ fore < 0.88 (20)
with e, = 19.7, 3.806, 31.84, 58.63, 40.77

199 —41ne for € > 0.88
- :

For comparison of the simulated or analytical calculated intensities with the
experimental one, not only the variable tagger bin width has to be consid-
ered but also multiple hits. They origin either from several electrons hitting
the tagger focal plane detectors at the ’same time’ or from one triggering
several detectors if beeing scattered in a scintillator of the tagger ladder.
This may be corrected by a so called multihit correction factor defined by
fu = N1+2N21§N3+4Nq with N,, being the number of n hits in a row in the
ladder, see figure 14

3.2 Collimation with non-ideal electron beam

The next step is to include collimation, but here in comparison to the pre-
vious chapter the effect of beam divergence, multiple scattering and a finite
beam spot size was modelled. The beam spot effect translates into a 'fuzzy’
collimator: instead of 'moving around’ the beam, the same effect is achieved
by ’moving around’ the collimator by a lateral displacement ér, ¢ in polar
coordinates. Due to a finite beam spot the collimator is no longer spherical
symmetric with respect to the incident electron and the dependence of the

E. |os/y |op,, |Di-Thickness | Colli dist. | Colli-radius
[MeV] | [mm] [mrad] [mm] [m] [mm]
855.0 | 0.2,0.06 | 0.08,0.08 | 0.1 2.5 1.5

Table 3: Experimental parameters of the electron beam at MAMI used in the
calculations presented here.
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collimator angle U, on the collimator displacement has to be considered by
a convolution of the intensity with the beam profile (compare with equa-
tion (13)):

u(p,9)
L= [eodsao) [ aurt @i u-u@) @1

with UZ = U?(p, ¢) + p* — 2U(p, d)pcos ¢ (21b)
2
_ -2 P

9s(p) = 0, exp 202 (21c)

The dependence of u(z) on z is given in equation (15) and the function u(p, ¢)
is depicted in figure 15. A gaussian distribution for the angular displacement
variation dp = drEy/L, stemming from the collimator displacement ér with
distance L, is assumed. Due to the Heaviside function the ¢ integration is
trivial and separates into the coherent intensity in terms of the ¥; functions
and a collimation function C,(U(z)):

I; = I°°"2)C, (U(x)) (22a)
Uc4U 1 2 2 772
pr+U*=U,
C,(U(x :/ dp gs(p)—arccos——=
(U()) |U07U|p ps(p) 200

Lo, -U) / " pdpaip) (22b)

The p integration of the first term in (22b) is left as a numerical task while
the second term gives: O(U, — U)[1 — exp(—(U. — U)?/20?)]. The function is
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plotted in figure 15, whereas the effect of beam spot size, beam divergence
and multiple scattering from (22b) on the lower energy part of a lattice vector
peak, hence the part influenced by a collimator is shown in figure 16.

Collimator

collimator function

.0 Nl ‘2 ‘5 4 .5
x, xd=0.5

Figure 15: Left: geometry of a displaced collimator (p beeing the polar dis-

placement) resulting in equation (21b). Right: collimation function C,(z) for

various angle divergencies oy
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Figure 16: Coherent intensity and polarisations and the result of collimation
with and without a finite beam spot size and beam divergence in comparison
with the uncollimated ones. Note, only equation (22) was applied, not (23a)

The additional effect of the beam divergence is a variation of the crystal an-
gles ap, B, with respect to their mean values «, 6 changing the intensity due
the dependence of the lattice vectors on these angles. With the appropriate
angle distribution functions derived via (23b) from the transversal momen-
tum distribution function g(¥, @) of the beam yields after same trigonomet-
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ric derivations:

Iy = /791; ddy doy ga(Vs, ds)I5( 0, Os) (23a)

with 6, = /62 + 67 — 20,8 cos &, (23b)

ap = o — arcsin(d, /6 - sin ¢y)

The distributions of the beam spot size o,/, with the collimator at distance
L and beam divergence o, ~are approximated by spherical ones and appro-
priately convoluted which results in a quadratically adding of the deviations,
to be used in equation (22b) and (23a):

f = away/L2 + 0, 0p, (24a)

Og = 0p,0p, + 6,2,1 (24b)

g

N

The effect of collimation on the incoherent part is described by the Hubbell
cross section in case of an ideal beam. If a finite beam spot size and beam
divergence come in to play equation (21) also applies for the photon angle dif-
ferential intensity (17) which yields after integration where v(p, ¢) is defined
by (21b):

17 = [ pdpds g.(p)I"(2,(p,9) (25)

3.3 Multiple scattering

The last experimental influence to be regarded is the so called moliére scat-
tering, meaning small angle scattering of the electrons in the radiator. In
[Mol48| a polar angle distribution (gaussian with o,,) of the electrons with
respect to the incident momentum is derived. The involved observables shall
be repeated here without further comment.

_0.0246
- EjA?

om(8) [Z4(Z +1)*p*s® = W (Q/s)] = a[bs® — W] (26a)

A(1.13 + 3.76 - (Zatem /v)?)

v,
0 =-1.32.-10"%=2
(Z +1)Z13p

Gy = / l ds oy, = albl®/3 — W(Q/)Il + Ei(W(2/1))Q] (26b)

s/ is the mean number of elastic scattering in the target in depth s and
W the Lambert’s function and E¢ the exponential integral which have to be
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evaluated numerically. The radiator density is denoted by p and the incident
electron velocity by ve.

The influence of beam divergence and multiple scattering with respect to
the lattice angles is dominant around the discontinuity and is shown for the
collimated case [fig. 17| in comparison with the experimental data.
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Figure 17: Comparison between collimated analytic and experimental spectra
for discontinuity at 220 MeV

The relatively good fit of the analytical collimated relative cross section in
the range x. to z4 justifies the use of the calculated polarisation as a first
estimate. It has to be noted, that this good agreement was only achieved
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after increasing the MAMI beam divergence as given in table 3 by ~ 3/4,
see also [tab. 7|. The intensity spectra calculated with the standard beam
divergence would underestimate the smeared out fall off around the discon-
tinuity of the measured spectra significantly. This fine tuning of the beam
parameters was only possible through the comparison with the absolute total
crystal intensities showing a higher sensitivity on beam parameters than the
relative spectra and the use of a fast code like ANB . The average polarisation

) tot hub 280
= 20 F
77 170 F
8 15 F
67— =
c 12.0 F
OF 3
8 10 E
i3 7.5 E
S F 5EF
2 F 2.5 F
T E ! 0O E
T N RN IR R RN B R
. 200 400 600 800 200 400 600 800
totamoc toterye
4 ¢ F
3.5 3
3F 3
2.5 F 3
2
1.5 £ -
Wﬁwﬂm‘ﬁm”‘.‘ HEN ;H‘\H‘m”m”m
O 200 400 600 800 200 400 600 800

Pol

Figure 18: Comparison between collimated analytic and experimental spectra
for discontinuity at 280 MeV
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obtained with ANB , was calculated via

— Zd
P1/2: / d.’L'O'COh

T1/2

whereas z1/, is defined as P(z1/2) =
gration limit being the collimation cutoff z. instead of x5, is recorded in

table 4.

/ / dz o (x (27)
T1/2

P(z4)/2, and P, with the lower inte-
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Figure 19: Comparison between collimated analytic and experimental spectra

for discontinuity at 350 MeV
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edge | (label) [MeV] | 220 | 280 | 350

crystal angles o [mrad] | 0.694 | 0.662 | 0.600
9  [mrad] || 0.0607 | 0.0607 | 0.0607

discontinuity kq [MeV] || 224.7 | 277.6 | 357.9

polarisation Prax %] 48 42 32

(uncollimated) | P [%] 24 21 16
P % 38 32 24

photon energy | kpax [MeV] 210 266 346

polarisation Prax %] 70 64 54
(collimated) Py [7)] 36 32 27
P [% 58 52 42

photon energy | kpax [MeV] 212 266 346
kip  [MeV] | 159 | 205 | 280

Table 4: Mean polarisation (27) and properties of the bremsstrahlung for three
different diamond settings, applied in the *He experiment.

4 Debye Waller factor

The so-called Debye Waller factor (31a) governs the ratio of incoherent to
coherent contribution to the total bremsstrahlung cross section and is only
necessary for a crystal radiator, which means that the incoherent cross section
employing a crystal instead of an amorphous radiator differs non trivial. It
depends on the momentum transfer to the lattice and has to be multiplied
to the 4 fold differential cross section, which effectively leads to a modified
form-factor. Now the analytical integration of the Bethe-Heitler cross section
to obtain the Hubbell one is no longer feasible and a different method to
account for the Debye Waller factor needs to be applied. The following two
chapters deal with two different approaches to that problem.

4.1 Reduction factor

The effect of the Debye Waller factor is effectively taken care of by a reduction
factor rp depending only on the photon energy [fig. 22] which has to be
multiplied to the Hubbell intensity: i =rp [&10. Tt has to be noted, that the
screening constant used for I P was calculated via the method described in
section 4.2 and evaluates with the 2C realistic form-factor [fig. 23] t0 Camo =
90.8. This constant was also calculated in a Thomas Fermi model [Hub58|
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Figure 20: Incoherent (uncollimated and collimated) intensities from MCB for
an ideal electron beam and their angular distributions of the emitted photon
in the lab system.

yielding C' = 111, whereas Timm |[Tim69] suggests C' = 71 for carbon. This
reduction factor has only to be calculated once via a numerical integration
to yield a table for interpolation or to be modelled by a fit function:

ro(z) = / 49, d9,dé TP (1 — fo(q) / / d0,d0.ds TP (28)

were the Bethe Heitler intensity (BH) is given by [BeH 54]:

dIP" ses,
dd.dd,dp  2mEZpiq?
X —Sg (4 —q¢°) + 783 (4(1 - 2)* - ¢%)
T i-c)
SeS~y COS O s2 482
—2—=71 4(1 — z) — ¢* + 22%) + 222 £ 7 29
(e e T R e R e et B0
P =pi+p*+ 2%+ 22 (cc — ¢y) — 2(cyCe + 545, COS B) (30)

The incident and scattered electron momentum is denoted as py, and p re-
spectively with the momentum transfer g, here in units of Ey. F(q*E}) is the
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Figure 21: Coherent intensities and angular distributions from MCB for ideal
beam.

atomic form-factor and fp the Debye Waller factor. ¥, and 1, are the polar
angles of the electron and photon and ¢ the azimuthal angle between both
momenta. The following abbreviations and relations are employed:

fp = exp(—A¢’E}) A =101.48 at room temperature (31a)
Cy = Po €OS Vs Sy = Posin v, (31b)
ce = pcost, Se = psind, (31c)
R=1- B P = (1-2) = B;? (31d)

fp depends weakly via a function A(Tpebye, TRoom) O room and Debye tem-
perature, with a typical value given in (31a). The numerical integration was
performed via an adaptive Monte Carlo method called VEGAS [NRe92|, with
the requirement of statistical accuracy of less than 10~3. For room temper-
ature the resulting reduction factor can be well described by the following
parametrisation:

rp(z) = a1 + a2/(1 — asx) a; = 0.7435,.0043,0.9863  (32)

The residual deviations of the numerical calculation compared to the fit are
in the order of 1% with x2; = 0.02 and it may be deduced from figure 22
that they are statistically only.
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Figure 22: Left: Debye Waller reduction factor rp(z). Shown is the fit (32)
to the numerical calculations (circles) of equation (28). Right: Debye Waller
effective screening constant. Plotted are the curves for Ceg with a quadratic
and linear fit and the deviation of the numerical results to the latter one.

4.2 Effective screening

The second method is based on the idea of an effective form-factor. For the
Hubbell cross section a dipole form factor with the screening constant C' is
used which has to be modified by the Debye Waller factor. Its influence on the
form-factor is a suppression of lower g-values for the incoherent cross section.
Although the description of the modified form-factor via a dipole form-factor
with effective screening constant Fg,eff ~ (1 — fp)FZ seems unsatisfactory
[fig. 23], it is to emphasise that the ¢ dependence of the cross section is
much less important than its integral. From a comparison of the total cross
section calculated from a numerical integration of the Bethe Heitler cross
section employing the Debye Waller factor (see equation (28)) and the 2C
realistic form-factor [Ram95] with the numerical integrated Hubbell cross
section an effective screening parameter Cog for the latter one is determined
via a fitting procedure. This was done for a finite temperature range. The
resulting screening constants in dependence of the temperature were linear
fitted giving:

Ceg(T) = a1 + a;T  a; = 27.24,0.0108K ! (33)

Incoherent ANB spectra calculated with both methods show a relative devi-
ation of less than 2% over the hole energy range. Therefor it can be deduced
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that these methods are valid treatments of accounting the debye waller fac-
tor employing the hubbell cross section. Furtheron the effective screening
method is used because the temperature dependence of the Debye Waller
factor is easier implemented there. The systematic error introduced by these
treatments may be estimated by their relative deviations giving a system-
atic error for the polarisation of less than one per cent point absolute in the
maximum of the polarisation and much smaller elsewhere.

4.3 Adaption to MCB

For the Monte Carlo description via MCB the same methods were used but
had to be adapted to a two fold differential (in photon energy = and angle 99)
treatment. Here, the basis of the modeling of the incoherent Hubbell intensity
consists of equation (17) and (33) for the effective form-factor method or a
two dimensional reduction factor rp(z,?) in the other case:

rofe,0) = [ 40401 (1 fo(a?) / [avaor

This was performed numerically using a grid for the photon variables, i.e.
48 steps in photon energy and 18 in the reduced photon angle U = 9/E, €
[0,1.9]. This table was then fitted employing three different fit functions,
given in equation (35a) with their parameters in table 5 and their plots in
[fig. 24].

ro)(@,9) = (p1 + p26P®) (pa + ps¥ + ped?) (35a)
rg) (z,9) = (p1 + p29 + p39°) (pa+ (1 — psz) ) (35b)

ro) (2,0) = p1 + pa(ps — )P + [ps + ps/ (1+ pr(ps — 2)?)] (35¢)
x {1 —exp [(po + pr0/(1 + p11(p12 — 2)%)) 9] }

Although fit no. 3 has the lowest x?, TS) was taken for further calculations
due to the smaller computing consumption in MCB .

5 Resulting polarisation

For an estimate of the systematic error of the polarisation, two sources were
considered: the one introduced by the two methods described above and the
consequences of the uncertainty of the MAMI beam parameters, see table 3.
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Figure 24: Debye Waller reduction factor rp(x,d) in photon energy x and

angle 9 for MCB . The numerical calculation of equation (34) was done using

an adaptive Monte Carlo integration method called VEGAS, see [NRe92],

which therefor shows small fluctuations.
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fit |1 | 2 |3 | |3

p1 | 0.664203 0.0103543 0.609626 p; | 103.549

po | 4.09235E-06 | 0.00262039 | 0.538128 ps | 0.909567
ps | 11.1074 -0.000621878 | 2.05571 po | -1.6652

ps | 0.932192 58.1925 12.1215 pro | 1.43357

ps | 0.237098 0.985096 0.16191 p1 | 12.8126

ps | -0.0564868 0.46922 p1a | 0.901264
2 | 1.070E-04 | 0.1296E-03 | 0.4938E-04

Table 5: Parameters of fits in equation (35a) to the two dimensional Debye
Waller reduction factor (34)
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Figure 26: Compared are the uncollimated (left) and collimated (right) polar-
1sations from MCB and ANB for the two methods. Note that the rp method
i MCB somewhat overestimates the polarisation in the peaks.
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In order to derive a systematic error from the uncertainty of the beam param-
eters, the effect of all experimental effects as beam divergence, finite beam
spot size, diamond temperature, multiple scattering on the polarisation would
have to be studied. But for an appropriate estimate only a variation of the
beam divergence having the biggest impact on the polarisation was used. The
polarisation was calculated for a 20% higher and lower beam divergence and
in reagard of its monotonically dependence a photon energy dependent error,
denoted with (BD), could be derived via (36a). The difference in the degree
of polarisation is about 0.02 with collimation in the [022] peak and much
less elsewhere. A more detailed overview on the systematic error is given in
table 6.

Also the influence on the polarisation of the two methods to deal with the
Debye Waller factor, as described in section 4, with their implementation in
ANB and MCB , was investigated to have an estimate of this error, see (36b).
The differences of the effective form-factor method and the reduction factor
method for the collimated case is less than 0.02 for both codes and again the
highest discrepancy was found to be in the peak region.

APgp(z) = |Pssp — Piasp|/2 (36a)
APou(z) = |Pog — Poyl2 (36)
APang mce (%) = (|Pane — Pucs /2)c; (36¢)

The overall very good agreement of these both methods indicate their relia-
bility, although there is one exception: The two dimensional reduction factor
for MCB seems to overestimate the polarisation in the uncollimated case by a
factor of 1.07, compare [tab. 6] in the peak region (but much less elsewhere).
Therefore and due to the fact that the temperature dependence is easier
implemented in that method the effective form-factor method was choosen
as the optimal method to model the effect of the Debye Waller factor in
the incoherent contribution. The photon energy dependent errors calculated
via equations (36) were added absolutely to a total systematical error and
plotted with the polarisation in figure 29 and 30. The polarisations for all
three discontinuities with their systematic errors are recorded in ascii files
(pol96_ {220,280,350}.dat) attached to this report. Their format consists of
four columns: the first beeing the photon energy followed by the coherent in-
tensity, the degree of polarisation and the total systematic error. The photon
energy values correspond to the Glasgow tagger channels.

In order to complete the survey of the errors involved, the influence of all
experimental parameters X, like crystal angle («), beam spot size (02Y),
beam divergence (o), diamond thickness (draq) and collimation angle (here:
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Figure 27: Plotted are the collimated polarisations for the three crystal angle
settings, see table 4, for comparison.

absolute difference in polarisation

uncollimated collimated
mean | [022] peak | mean | [022] peak
APgp 1-1073 0.01 0.01 0.02

AP;,(ANB) | 4-107*| 2107 |3-1073 0.01
AP;,(MCB) | 5-1073 0.03 51073 0.02
APANB MCB 4-1073 0.02 6-1073 0.01

Table 6: Overview of systematic error of the polarisation due to uncertainty
in the MAMI beam parameters and the methods dealing with the Debye Waller
factor. The error in the peak is always the mazximal error and 'mean’ shows
the averaged systematic error over the whole energy range.
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| X; | X? |umits [[r.=15] 25 | 4 [ uncollimated |

]

v .0607 | rad 0.18 0.19 | 0.19 0.18
o .694 | rad 1.18 1.33 | 1.43 1.5
o?¥ | 2,06 | mm 0.003 | 0.002 | 0.001 0

o, | .16,.16 | mrad | 0.047 | 0.013 | 0.007 0.007
drad 1 mm 0.071 0.02 | 0.004 0.005
d. 2.5 m 0.11 0.17 | 0.09 0

Table 7: Variation of polarisation Ex (37) in dependence of parameter X;
for three different collimators (r.) and the uncollimated situation.

collimator distance d.) on the degree of polarisation was investigated. For a
calculation of the error propagation of those parameters

AP oP X?

AP o _ X7 | AX; AX;
Py Y |0X; Py

Xy T TNXD

(37)

the slope P /0X;, where P is defined in (27), was determined by computing
the polarisations P(X;;) from ANB for excessive and reduced parameters
Xi;; = X?2(1 +¢;) with ¢; = 0,.01,.02,.04, .06, .08, .1, see figure 28. The
polarisations in dependence of ¢; were fitted with a second order polynomial
and its slope taken as the slope of the error propagation of this particular
parameter X; while the others were kept to their standard values X?. From
that Ex can be derived and is recorded in table 7 for four different collimators.
One can deduce from the table that the biggest effect arise from the diamond
thickness, crystal angle o and beam divergence, wereat the latter two have
the larger uncertainties. Asuming an error in beam divergence of 20% (one
sigma) the error propagation for the polarisation gives a difference AP in
the degree of polarisation of about 1% absolute, which is consistent with the
error estimate on page 37.

39



S /O A bdiv
“ cry
E\ >/< . acry © drod
0 g0 S / © bspot  *d_
S ™~ / ke X
= e
G BT = 00— % — = %ﬁr: —0— — — % [
c ////%// / ~_© \\Ei\\\A &
O RS — O
[} | ¥ / O -
E 60 /*/ / EI\ O
o ~
/* 1
~
59 1 ‘ | ‘ L
—0.10 —0.05 0.00 0.05 0.710
relative deviation €
Figure 28: Mean polarisations with a r. = 1.5 mm collimator for all six

parameters X; versus the relative deviations e; with their fit of a second order
polynom to deduce the variation Ex at X°.

0.8 | |

0.6 1

0.4+

0.2

0.0 ' — e~
T~

| | |
0 200 400 600 800
ohoton energy [MeV ]

polarisation with systematic error

Figure 29: Resulting collimated polarisation for discontinuity at 220 MeV and
the systematic error from (36a) and (36b).
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polarisation with systematic error
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Figure 30: Same as figure 29 but for the uncollimated case.
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Figure 31: Resulting collimated polarisation for discontinuity at 280 MeV.
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Figure 32: Resulting collimated polarisation for discontinuity at 350 MeV.
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